science tech buildings architecture heating winter energy_efficient_design innovators engineering
Why Heat The Building When You Can Heat The Person?

image

by Michael Keller

Fall is rapidly approaching and temperatures have already started to drop in some areas of the country. It’s time to figure out where the jackets got hidden at the end of last winter and whether the heater is up for the task this year. 

Residential and commercial buildings were responsible for 40 percent of all the energy consumed in the U.S. in 2013. That total makes the lighting, heating and cooling of indoor residential and commercial spaces the most power hungry of all users, beating industrial and transportation consumption by more than 10 percent each. Buildings also contribute almost 40 percent of all U.S. carbon dioxide emissions. 

Focusing in, it turns out that space heating is the biggest energy hog and accounts for 37 percent of the total power consumed by U.S. buildings in 2010, according to the Buildings Energy Data Book

Why isn’t there a smarter way than heating rooms regardless of whether people are in them or that the living things that occupy a space take up only a fraction of the conditioned area?

Read More

123
123 notes
https://www.tumblr.com/reblog/97559777817/5VVIHTVR
Permalink
text
science tech week_in_review news biotechnology health medicine stem_cells waste_to_energy power cancer
Txch This Week: Cancer-Detecting Nanotech And Produce Section Power Production

image

by Jared Kershner

This week on Txchnologist, NASA tested experimental rocket engine injectors that were 3-D printed to enhance performance over traditionally manufactured components. This 3-D printing technique, called direct laser melting, consists of a machine that fires a laser at metal powder under the control of a computer design program, depositing layers of the metal on top of one another until the part is produced. The hope? To demonstrate that 3-D printed designs can truly revolutionize system performance along with production time and cost.

A team led by biophysicist Markus Sauer and chemist Jürgen Seibel have pioneered a new microscopy method, dSTORM, which stands for direct Stochastic Optical Reconstruction Microscopy. This allows for the visualization of objects in super resolution, revealing details of cells ten times better than ever before by stitching together multiple images to create a single, sharper one. By resolving objects by mere millionths of millimeters across, researchers will inevitably gain new insights into activity in infectious diseases and cancer in human cells.

Harvard roboticists are in the process of constructing a soft-bodied, untethered robot that can continue operating through fire, water, crushing force, and even freezing conditions. Its body is constructed from a composite of silicone, fabric, and hollow glass microspheres. The group’s gains are an important step forward: If robots such as these are to perform rescue missions and survive demanding weather conditions, they need to be able to roam and slither free from cumbersome power connections.

Now we’re bringing you the news and trends we’ve been following this week in the world of science, technology, and innovation.

Read More

54
54 notes
https://www.tumblr.com/reblog/97310595021/HgusuLWo
Permalink
text
science space exploration agriculture mars life_and_nature food astronauts plants
Astronauts May Grow Better Salads On Mars Than On The Moon

by Patricia Waldron, Inside Science

Any explorers visiting Mars and the moon will have to boldly grow where no man has grown before.

Setting up lunar or Martian colonies will require that explorers raise their own food. New research finds that simulated Martian soil supported plant life better than both simulated moon soil and low-quality soil from Earth. But many problems must be solved before astronauts can pick their first extraterrestrial eggplant. The study appears in the journal PLOS ONE.

"Research like this is needed to fine-tune future plans for growing plants on Mars, which I think is going to be a very useful thing if we want to have colonization or even a shorter-term stay on Mars," said John Kiss, a plant biologist at the University of Mississippi in Oxford, who did not participate in the research. "It’s hard to carry all the food with you."

Read More

93
93 notes
https://www.tumblr.com/reblog/97295678161/92nI0CXs
Permalink
text
science tech engineering internet_of_things industrial_internet sensors antenna radio wifi badass_machines innovators featured
Internet-Connected Machines Might Find Their Voices With This Chip

image

by Michael Keller

A future covered with data-beaming sensors just got a little closer. Stanford engineers say they have produced miniscule chips that cost just pennies to make. These silicon-based components can process and relay commands, making them ant-sized controllers that can send and receive information wirelessly.  Developers say the chips bridge the communication gap between sensors, machines and computers and will let them communicate back and forth.  

Electrical engineer Amin Arbabian says the devices he has created are powered by the radio signals they are tuned to receive, so they don’t need any external power sources.

"The next exponential growth in connectivity will be connecting objects together and giving us remote control through the web," said Arbabian. "How do you put a bi-directional wireless control system on every lightbulb? By putting all the essential elements of a radio on a single chip that costs pennies to make."

"We’re ultimately talking about connecting trillions of devices."

image

Read More

205
205 notes
https://www.tumblr.com/reblog/97219978725/GCkVMNJW
Permalink
text

LATEST